Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sex allocation theory offers excellent opportunities for testing how animals adjust their behaviour in response to environmental conditions. A major focus has been on instances of local mate competition (LMC), where female-biased broods are produced to maximise mating opportunities for sons. However, the predictions of LMC theory can be altered if there is both local competition for resources during development and an asymmetry between the competitive abilities of the sexes, as has been seen in animals ranging from wasps to birds. In this paper, we test the extent to which asymmetric larval competition alters the predictions of LMC theory in the parasitoid wasp Nasonia vitripennis. We found that the body size of both sexes was negatively correlated with the number of offspring developing within the host. Further, we found that when faced with high levels of competition, the body size of females, but not males, was influenced by the sex ratio of the competing offspring; females were smaller when a higher proportion of the brood was female. This asymmetric competition should favour less biased sex ratios than are predicted by standard LMC theory. We then develop a theoretical model that can be parameterised with our data, allowing us to determine the quantitative consequences of the observed level of asymmetric larval competition for sex allocation. We found that although asymmetric competition selects for less biased sex ratios, this effect is negligible compared to LMC. Furthermore, a similar conclusion is reached when we re-analyse existing data from another parasitoid species where asymmetric larval competition has been observed; Bracon hebetor. Consequently, we suspect that asymmetric larval competition will have its greatest influence on sex ratio evolution in species that have smaller clutches and where local mate competition is not an issue, such as birds and mammals. © 2007 Springer-Verlag.

Original publication

DOI

10.1007/s00265-007-0407-1

Type

Journal article

Journal

Behavioral Ecology and Sociobiology

Publication Date

01/09/2007

Volume

61

Pages

1751 - 1758