Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Kin selection theory predicts that the damage to a host resulting from parasite infection (parasite virulence) will be negatively correlated to the relatedness between parasites within the host. This occurs because a lower relatedness leads to greater competition for host resources, which favours rapid growth to achieve greater relative success within the host, and that higher parasite growth rate leads to higher virulence. We show that a biological feature of bacterial infections can lead to the opposite prediction: a positive correlation between relatedness and virulence. This occurs because a high relatedness can favour greater (cooperative) production of molecules that scavenge iron (siderophores), which results in higher growth rates and virulence. More generally, the same underlying idea can predict a positive relationship between relatedness and virulence in any case where parasites can cooperate to increase their growth rate; other examples include immune suppression and the production of biofilms to aid colonization.

Original publication

DOI

10.1098/rspb.2002.2209

Type

Journal article

Journal

Proc Biol Sci

Publication Date

07/01/2003

Volume

270

Pages

37 - 44

Keywords

Animals, Bacteria, Bacterial Infections, Biofilms, Host-Parasite Interactions, Models, Biological, Sex Ratio, Siderophores, Virulence