Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The sex ratio (z*; proportion of gametocytes that are male) of malaria and related hemospororin blood parasites has been predicted to be related to the inbreeding rate (f) by the simple equation z* = (1 - f)/2. Although there is some empirical support for this prediction, there are several cases where the sex ratio is less female biased or more variable than expected. Here, we present a theoretical model that may be able to explain some of these discrepancies. We show that if low gametocyte densities lead to a danger that female gametes may not encounter any male gametes, then natural selection favors a less female-biased sex ratio as a form of 'fertility insurance' to ensure that female gametes are mated. This model can be applied to a number of situations. In particular, (1) empirical data suggest that the number of gametocyes per blood meal can be low enough to favor fertility insurance in some Plasmodium infections in humans and (2) our model predicts facultative shifting toward less-biased sex ratios in response to immune pressure that reduces gametocyte or gamete survival or mobility, consistent with some recent experimental data from Plasmodium species of birds and mice.

Original publication




Journal article


J Parasitol

Publication Date





258 - 263


Animals, Female, Fertility, Inbreeding, Male, Models, Biological, Plasmodium, Sex Ratio