Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent research indicates that working memory (WM) and attention interact, with attention automatically biased to stimuli that match the contents of WM. Though there is behavioral evidence for verbal guidance (written words) as well as guidance by more visual cues in WM, we have limited understanding of how these two representational formats influence the guidance of visual selection at a neural level. Here, we present converging evidence from functional MRI and transcranial magnetic stimulation (TMS), which indicates that both common and distinct neural regions mediate the influence of visuoverbal representations on WM. Colored shapes, but not words, in WM activated the superior frontal gyrus (SFG) and recognition memory areas in the temporal lobe when the contents of WM matched a stimulus in a subsequent search display. rTMS to the SFG disrupted WM effects from colored shapes. The lateral occipital cortex, however, tended to be more activated with written word cues, and rTMS to the lateral occipital complex tended to disrupt effects from written words more than from colored shapes in WM. There was also evidence for cue validity effects from colored shapes and written stimuli operating through different subthalamic nuclei. We discuss the evidence for understanding the neural systems mediating attention effects from WM.

Original publication




Journal article


Hum Brain Mapp

Publication Date





105 - 120


Adult, Attention, Brain, Cues, Female, Humans, Magnetic Resonance Imaging, Male, Memory, Short-Term, Photic Stimulation, Transcranial Magnetic Stimulation, Vision, Ocular