Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Memory and attention interact. Information held in working memory (WM) can bias visual selection toward matching stimuli in a subsequent search display, while a search target that is different from the memory stimulus can interfere with its subsequent recognition. In recent fMRI studies, the pulvinar has been consistently shown to have an enhanced response when an item in WM matches a search target and a reduced response when the WM item matches a distracter in search. Here we used Granger causality analysis to help understand the role of the pulvinar in resolving competition between memory and selection processes. Across three experiments the results showed increased coupling between the pulvinar and the ipsilateral superior frontal gyrus, contralateral temporal-parietal junction (TPJ) and calcarine sulcus when a visual search distracter matched the item held in memory. This connection pattern suggests that the pulvinar suppresses visual responses to the target when a contralateral distracter contains information held in working memory. We propose that this suppression acts to protect the memory item from interference arising from information associated with the search target. Consistent with this proposal we showed that the strength of the thalamus-to-visual connection predicted performance on a subsequent memory test. The data therefore suggest that the thalamus modulates bottom up processing in sensory cortex to minimize interference to WM content.

Original publication




Journal article



Publication Date





1544 - 1552


Adult, Attention, Cerebral Cortex, Female, Field Dependence-Independence, Functional Laterality, Humans, Magnetic Resonance Imaging, Male, Memory, Short-Term, Models, Neurological, Neural Pathways, Pulvinar, Reference Values, Thalamus, Visual Perception, Young Adult