Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Oligonucleotides used in gene therapy and silencing are fragile compounds that degrade easily in biological environments. Porous biocompatible carrier particles may provide a useful strategy to deliver these therapeutics to their target sites. Development of appropriate delivery vehicles, however, requires a better understanding of the oligonucleotide-host interactions and the oligonucleotide dynamics inside carrier particles. We investigated template-free SBA-15 type mesoporous silica particles and report their loading characteristics with siRNA depending on the surface functionalization of their porous network. We show that the siRNA uptake capability of the particles can be controlled by the composition of the functional groups. Fluorescence recovery after photobleaching measurements revealed size-dependent mobility of siRNA and double-stranded DNA oligonucleotides within the functionalized silica particles and provided evidence for the stability of the oligonucleotides inside the pores. Hence, our study demonstrates the potential of mesoporous silica particles as a means for alternative gene delivery in nanomedicine. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Original publication

DOI

10.1002/adfm.201101365

Type

Journal article

Journal

Advanced Functional Materials

Publication Date

11/01/2012

Volume

22

Pages

106 - 112