Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Rab GTPases regulate all steps of membrane trafficking. Their interconversion between active, GTP-bound states and inactive, GDP-bound states is regulated by guanine nucleotide exchange factors and GTPase-activating proteins. The substrates for most Rab GTPase-activating proteins (GAPs) are unknown. Rab9A and its effectors regulate transport of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. We show here that RUTBC1 is a Tre2/Bub2/Cdc16 domain-containing protein that binds to Rab9A-GTP both in vitro and in cultured cells, but is not a GTPase-activating protein for Rab9A. Biochemical screening of RUTBC1 Rab protein substrates revealed highest in vitro GTP hydrolysis-activating activity with Rab32 and Rab33B. Catalysis required Arg-803 of RUTBC1, and RUTBC1 could activate a catalytically inhibited Rab33B mutant (Q92A), in support of a dual finger mechanism for RUTBC1 action. Rab9A binding did not influence GAP activity of bead-bound RUTBC1 protein. In cells and cell extracts, RUTBC1 influenced the ability of Rab32 to bind its effector protein, Varp, consistent with a physiological role for RUTBC1 in regulating Rab32. In contrast, binding of Rab33B to its effector protein, Atg16L1, was not influenced by RUTBC1 in cells or extracts. The identification of a protein that binds Rab9A and inactivates Rab32 supports a model in which Rab9A and Rab32 act in adjacent pathways at the boundary between late endosomes and the biogenesis of lysosome-related organelles.

Original publication




Journal article


J Biol Chem

Publication Date





33213 - 33222


Amino Acid Sequence, Animals, Biocatalysis, Cell Extracts, Cell Line, GTPase-Activating Proteins, Guanosine Triphosphate, Humans, Hydrolysis, Intracellular Signaling Peptides and Proteins, Molecular Sequence Data, Protein Binding, Protein Structure, Tertiary, Substrate Specificity, rab GTP-Binding Proteins