Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have studied the structure and transcription of a cloned human beta-globin gene from a fetus diagnosed for beta 0 thalassemia. The sequence of the beta 0 gene differs from that of a normal beta-globin gene at positions 1 and 74 of the second intervening sequence (IVS2). The position 1 change alters the GT dinucleotide conserved at 5' splice sites, while the position 74 change is a common sequence polymorphism. When the cloned beta 0 gene is introduced into HeLa cells by use of an SV40-derived plasmid vector, two abnormally spliced cytoplasmic beta-globin RNAs are detected. The predominant RNA differs from normal beta-globin mRNA by the insertion of the first 47 nucleotides of IVS2 between exons 2 and 3. The less abundant RNA comprises the normal first exon spliced directly to the third. Analysis of nuclear RNA suggests that the beta 0 transcript is inefficiently spliced and that the removal of the two intervening sequences is coupled.

Type

Journal article

Journal

Cell

Publication Date

07/1982

Volume

29

Pages

903 - 911

Keywords

Base Sequence, Cell Nucleus, Cloning, Molecular, Genes, Globins, HeLa Cells, Humans, RNA Processing, Post-Transcriptional, RNA Splicing, RNA, Messenger, Thalassemia, Transcription, Genetic