Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The electrocardiogram (ECG) is widely used as a clinical tool for the evaluation of cardiac conditions caused by drugs, mutations and diseases. However, the ionic basis underlying changes in the ECG are often unclear. In the present study, we present a computational model of the human ECG capable of representing drug-induced effects from the ionic to the surface potential level. Bidomain simulations are conducted to simulate the electrophysiological activity of the heart and extracellular potentials in the whole body. Membrane kinetics are represented by the most recent version of a human action potential model, modified to include representation of HERG block by dofetilide, a known class III anti-arrhythmic drug with potential pro-arrhythmic effects. Simulation results are presented showing how dofetilide administration results in the prolongation of the action potential duration in the ventricles and the QT interval measured on the surface of the thorax, in agreement with clinical results. The state-of-the-art tools and methodologies presented here could be useful in the investigation and assessment of drug cardiotoxicity and can also be extended to the investigation of the effect of mutations or disease on the ECG. © 2011 Springer-Verlag Berlin Heidelberg.

Original publication




Journal article


Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Publication Date



6666 LNCS


259 - 266