Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

gamma-Aminobutyric acid (GABA)ergic neurons are widely distributed in brainstem structures involved in the regulation of the sleep-wake cycle, locomotion, and attention. These brainstem structures include the pedunculopontine nucleus (PPN), which is traditionally characterized by its population of cholinergic neurons that have local and wide-ranging connections. The functional heterogeneity of the PPN is partially explained by the topographic distribution of cholinergic neurons, but such heterogeneity might also arise from the organization of other neuronal populations within the PPN. To understand whether a topographical organization is also maintained by GABAergic neurons, we labeled these neurons by in situ hybridization for glutamic acid decarboxylase mRNA combined with immunohistochemistry for choline acetyltransferase to reveal cholinergic neurons. We analyzed their distribution within the PPN by using a method to quantify regional differences based on stereological cell counts. We show that GABAergic neurons of the rat PPN have a rostrocaudal gradient that is opposite to that of cholinergic neurons. Indeed, GABAergic neurons are predominantly concentrated in the rostral PPN; in addition, they form, along with cholinergic neurons, a small, high-density cluster in the most caudal portion of the nucleus. Thus, we provide evidence of heterogeneity in the distribution of different neuronal populations in the PPN and show that GABAergic and cholinergic neurons define neurochemically distinct areas. Our data suggest that the PPN is neurochemically segregated, and such differences define functional territories.

Original publication

DOI

10.1002/cne.22065

Type

Journal article

Journal

J Comp Neurol

Publication Date

01/08/2009

Volume

515

Pages

397 - 408

Keywords

Animals, Cell Count, Choline O-Acetyltransferase, Glutamate Decarboxylase, Male, Neurons, Pedunculopontine Tegmental Nucleus, RNA, Messenger, Rats, gamma-Aminobutyric Acid