Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

HeLa cells were encapsulated in agarose microbeads, permeabilized and incubated with Br-UTP in a 'physiological' buffer; then sites of RNA synthesis were immunolabelled using an antibody that reacts with Br-RNA. After extending nascent RNA chains by < 400 nucleotides in vitro, approximately 300-500 focal synthetic sites can be seen in each nucleus by fluorescence microscopy. Most foci also contain a component of the splicing apparatus detected by an anti-Sm antibody. alpha-amanitin, an inhibitor of RNA polymerase II, prevents incorporation into these foci; then, using a slightly higher salt concentration, approximately 25 nucleolar foci became clearly visible. Both nucleolar and extra-nucleolar foci remain after nucleolytic removal of approximately 90% chromatin. An underlying structure probably organizes groups of transcription units into 'factories' where transcripts are both synthesized and processed.


Journal article



Publication Date





1059 - 1065


Cell Nucleolus, Cell Nucleus, DNA Replication, HeLa Cells, Humans, RNA Polymerase I, RNA Polymerase II, RNA, Messenger, Ribonucleoproteins, Small Nuclear, S Phase, Transcription, Genetic, Uridine Triphosphate