Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In the budding yeast Saccharomyces cerevisiae the Srs2/RadH DNA helicase promotes survival after ultraviolet (UV) irradiation, and has been implicated in DNA repair, recombination and checkpoint signalling following DNA damage. A second helicase, Sgs1, is the S.cerevisiae homologue of the human BLM and WRN proteins, which are defective in cancer predisposition and/or premature ageing syndromes. Saccharomyces cerevisiae cells lacking both Srs2 and Sgs1 exhibit a severe growth defect. We have identified an Srs2 orthologue in the fission yeast Schizosaccharomyces pombe, and have investigated its role in responses to UV irradiation and inhibition of DNA replication. Deletion of fission yeast srs2 caused spontaneous hyper-recombination and UV sensitivity, and simultaneous deletion of the SGS1 homologue rqh1 caused a severe growth defect reminiscent of that seen in the equivalent S.cerevisiae mutant. However, unlike in budding yeast, inactivation of the homologous recombination pathway did not suppress this growth defect. Indeed, the homologous recombination pathway was required for maintenance of normal fission yeast viability in the absence of Srs2, and loss of homologous recombination and loss of Srs2 contributed additively to UV sensitivity. We conclude that Srs2 plays related, but not identical, roles in the two yeast species.

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

15/07/2001

Volume

29

Pages

2963 - 2972

Keywords

Amino Acid Sequence, Cell Division, DNA Damage, DNA Helicases, DNA Repair, DNA Topoisomerases, Type I, DNA-Binding Proteins, Fungal Proteins, Gene Deletion, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Fungal, Genes, Lethal, Hydroxyurea, Molecular Sequence Data, Phenotype, Rad51 Recombinase, Recombination, Genetic, Saccharomyces cerevisiae Proteins, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Sequence Homology, Amino Acid, Ultraviolet Rays