Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Delayed ventricular arrhythmias during acute myocardial ischemia (1B arrhythmias) are associated with an increase in tissue impedance and are most likely sustained in a thin subepicardial layer. OBJECTIVE: The goal of this study was to test the hypothesis that heterogeneous uncoupling between depolarized midmyocardium and surviving subepicardium results in heterogeneous refractoriness in the latter, providing the reentry substrate after a premature beat. METHODS: A 3-dimensional bidomain slab was constructed comprising a normal subepicardial layer coupled to a slightly depolarized (-80 to -60 mV) but inexcitable midmyocardium. Experimentally measured tissue impedance served as input for the model. Four stages of heterogeneous uncoupling between the 2 layers were simulated, each corresponding to an experimental ischemic impedance value. Effective refractory periods (ERP), conduction velocities, and inducibility of reentry were examined. RESULTS: Heterogeneous uncoupling resulted in subepicardial ERP dispersion, allowing reentry to occur. The minimum ERP dispersion needed to induce reentry was 28 ms. Reentry induction was only possible in this model at the 2 intermediate stages of uncoupling, and only when midmyocardial resting membrane potential was more negative than -60 mV. Complete uncoupling of the layers resulted in normal subepicardial conduction without arrhythmias. The minimum length of the reentrant pathway was 2.5 cm, comparable to 2.4 cm reported in previous experiments. CONCLUSION: Heterogeneous uncoupling to a negative sink such as depressed inexcitable midmyocardium may be a substrate for ischemia 1B arrhythmias. Total uncoupling removes the arrhythmogenic substrate.

Original publication




Journal article


Heart Rhythm

Publication Date





1036 - 1044


Animals, Arrhythmias, Cardiac, Computer Simulation, Heart, Myocardial Ischemia, Myocardium, Pericardium, Refractory Period, Electrophysiological