Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have devised a simple method for ordering markers on a chromosome and determining the distances between them. It uses haploid equivalents of DNA and the polymerase chain reaction, hence 'happy mapping'. Our approach is analogous to classical linkage mapping; we replace its two essential elements, chromosome breakage and segregation, by in vitro analogues. DNA from any source is broken randomly by gamma-irradiation or shearing. Markers are then segregated by diluting the resulting fragments to give aliquots containing approximately 1 haploid genome equivalent. Linked markers tend to be found together in an aliquot. After detecting markers using the polymerase chain reaction, map order and distance can be deduced from the frequency with which markers 'co-segregate'. We have mapped 7 markers scattered over 1.24 Mbp using only 140 aliquots. Using the 'whole-genome' chain reaction, we also show how the approach might be used to map thousands of markers scattered throughout the genome. The method is powerful because the frequency of chromosome breakage can be optimized to suit the resolution required.

Type

Journal article

Journal

Nucleic Acids Res

Publication Date

11/01/1993

Volume

21

Pages

13 - 20

Keywords

Base Sequence, Chromosome Mapping, DNA, Female, Genetic Markers, Humans, Meiosis, Molecular Sequence Data, Muscular Dystrophies, Polymerase Chain Reaction, Sonication, X Chromosome