Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The use of computational approaches in the analysis of high resolution magnetic resonance images (MRI) of the human brain provides a powerful tool for in vivo studies of brain anatomy. Here, we report results obtained with a voxel-wise statistical analysis of hemispheric asymmetries in regional 'amounts' of gray matter, based on MRI scans obtained in 142 healthy young adults. Firstly, the voxel-wise analysis detected the well-known frontal (right > left) and occipital (left > right) petalias. Secondly, our analysis confirmed the presence of left-greater-than-right asymmetries in several posterior language areas, including the planum temporale and the angular gyrus; no significant asymmetry was detected in the anterior language regions. We also found previously described asymmetries in the cingulate sulcus (right > left) and the caudate nucleus (right > left). Finally, in some brain regions we observed highly significant asymmetries that were not reported before, such as in the anterior insular cortex (right > left). The above asymmetries were observed in men and women. Our results thus provide confirmation of the known structural asymmetries in the human brain as well as new findings that may stimulate further research of hemispheric specialization.

Original publication

DOI

10.1093/cercor/11.9.868

Type

Journal article

Journal

Cereb Cortex

Publication Date

09/2001

Volume

11

Pages

868 - 877

Keywords

Adolescent, Adult, Caudate Nucleus, Cerebral Cortex, Chi-Square Distribution, Data Interpretation, Statistical, Female, Functional Laterality, Gyrus Cinguli, Humans, Magnetic Resonance Imaging, Male