Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The goal of this study is to investigate the mechanisms responsible for the increase in the upper limit of vulnerability (ULV; highest shock strength that induces arrhythmia) following the increase in pacing rate. To accomplish this goal, the study employs a three-dimensional bidomain finite element model of a slice through the canine ventricles. The preparation was paced eight times at a basic cycle length (BCL) of either 80 or 150ms followed by delivery of shocks of various strengths and timings. Our results demonstrate that the shock strength, which induced an arrhythmia 50% of the time, increased 20% for the faster pacing compared to the slower pacing. Analysis of the mechanisms underlying the increased vulnerability revealed that delayed post-shock activations originating in the tissue depths appear as breakthrough activations on the surfaces of the preparation following an isoelectric window (IW). However, the IW duration was consistently shorter in the faster-paced preparation. Consequently, breakthrough activations appeared on the surfaces of this preparation earlier, when the tissue was less recovered, resulting in higher probability of unidirectional block and reentry. This explains why shocks of the same strength were more likely to result in arrhythmia induction when delivered to a preparation that was rapidly paced.

Original publication




Journal article


Philos Trans A Math Phys Eng Sci

Publication Date





1333 - 1348


Action Potentials, Animals, Arrhythmias, Cardiac, Biological Clocks, Cardiac Pacing, Artificial, Computer Simulation, Heart Conduction System, Heart Rate, Humans, Models, Cardiovascular, Risk Assessment, Risk Factors