Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Spider silk combines strength and extensibility, and a wide range of mechanical properties can be achieved with only minute (if any) changes in chemical structure. It appears that the full range of thermo-mechanical properties of such silk fibres can be predicted by examining the energy imparted during stretching with the theoretical framework provided by Mean Field Theory for Polymers. This approach attempts to integrate strain and tensile stress with a range of relevant energetic and mechanical parameters such as the loss tangent and potential energy of atomic inter-chain bonding as well as the tensile and bulk elastic moduli. The model reveals that the underlying design principle of silks seems to share an inherent and surprising simplicity at the macromolecular level. We conclude that our modelling approach allows in-depth analysis of natural silks as well as a comparison with synthetic fibres. © Springer-Verlag 2005.

Original publication

DOI

10.1007/s00339-005-3437-4

Type

Journal article

Journal

Applied Physics A: Materials Science and Processing

Publication Date

01/02/2006

Volume

82

Pages

205 - 212