Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent studies using cloned antigen-specific T lymphocytes and monoclonal antibodies directed at their various surface glycoprotein components have led to the identification of the human T-cell antigen receptor as a surface complex comprised of a clonotypic 90-kD Ti heterodimer and the invariant 20- and 25-kD T3 molecules. Approximately 30,000-40,000 Ti and T3 molecules exist on the surface of human T lymphocytes. These glycoproteins are acquired and expressed during late thymic ontogeny, thus providing the structural basis for immunologic competence. The alpha and beta subunits of Ti bear no precursor-product relationship to one another and are encoded by separate genes. Moreover, the presence of unique peptides following proteolysis of different Ti molecules isolated by non-cross-reactive anticlonotypic monoclonal antibodies supports the notion that variable regions exist within both the alpha and the beta subunits. N-Terminal amino acid sequencing and molecular cloning of the Ti beta subunit further show that it bears an homology to the first V-region framework of immunoglobulin light chains and represents the product of a gene that rearranges specifically in T lymphocytes. Triggering of the T3-Ti receptor complex gives rise to specific antigen-induced proliferation through an autocrine pathway involving endogenous IL-2 production, release, and subsequent binding to IL-2 receptors. The implications of these findings for understanding human T-cell growth and its regulation in disease states are discussed.


Journal article


J Clin Immunol

Publication Date





141 - 157


Amino Acid Sequence, Antibodies, Monoclonal, Antigen-Antibody Complex, Antigens, Surface, Cell Membrane, Cells, Cultured, Clone Cells, Epitopes, Genes, Humans, Macromolecular Substances, Major Histocompatibility Complex, Receptors, Antigen, T-Cell, T-Lymphocytes, T-Lymphocytes, Cytotoxic