Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: We report a series of three experiments designed to assess the relative speed with which people can initiate speeded head-orienting responses following the presentation of spatial warning signals. BACKGROUND: Recent cognitive neuroscience findings have shown that the human brain tends to treat stimuli occurring in peripersonal space as being somehow more behaviorally relevant and attention demanding than stimuli occurring in extrapersonal space. These brain mechanisms may be exploited in the design of warning signals. METHOD: Experiment 1 assessed the effectiveness of various different unisensory warning signals in eliciting a head-turning response to look at the potential source of danger requiring participants' immediate attention; Experiment 2 assessed the latency of a driver's responses to events occurring in the cued direction; Experiment 3 assessed the relative effectiveness of various warning signals in reorienting a person's gaze back to a central driving task while he or she was distracted by a secondary task. RESULTS: The results show that participants initiated head-turning movements and made speeded discrimination or braking responses significantly more rapidly following the presentation of a close rear auditory warning signal than following the presentation of either a far frontal auditory warning signal, a vibrotactile warning signal presented to their waist, or a peripheral visual warning signal. CONCLUSION: These results support the claim that the introduction of peripersonal warning signals results in a significant performance advantage relative to traditionally designed warnings. APPLICATION: Warning systems that have been designed around the constraints of the human brain offer great potential in the future design ofmultisensory interfaces.

Original publication




Journal article


Hum Factors

Publication Date





539 - 556


Adult, Auditory Perception, Automobile Driving, Computer Simulation, Cues, Female, Humans, Male, Psychomotor Performance, Reaction Time, Space Perception, Young Adult