Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The design principles of spider dragline silk, nature's high-performance fiber, are still largely unknown, in particular for the noncrystalline glycine-rich domains, which form the bulk of the material. Here we apply two-dimensional solid-state NMR to determine the distribution of the backbone torsion angles (phi,psi) as well as the orientation of the polypeptide backbone toward the fiber at both the glycine and alanine residues. Instead of an "amorphous matrix," suggested earlier for the glycine-rich domains, these new data indicate that all domains in dragline silk have a preferred secondary structure and are strongly oriented, with the chains predominantly parallel to the fiber. As proposed previously, the alanine residues are predominantly found in a beta sheet conformation. The glycine residues are partly incorporated into the beta sheets and otherwise form helical structures with an approximate 3-fold symmetry.

Original publication

DOI

10.1073/pnas.152162299

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

06/08/2002

Volume

99

Pages

10266 - 10271

Keywords

Animals, Fibroins, Models, Molecular, Protein Folding, Protein Structure, Tertiary, Proteins, Spiders