Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The silk gland of the golden orb spider Nephila edulis connects to the exit spigot through a long S-shaped duct that assists in the formation of the thread. Previous evidence suggests that the epithelium of the distal (last) part of the duct is specialized for ion transport and that a proton pump is involved in this process. Here, we present evidence from SEM (scanning electron microscope)-EDAX (energy dispersive X-ray) microanalysis of rapidly frozen material maintained at approximately -150 degrees C and from the use of pH indicators that the element composition and pH change progressively as the dragline silk dope (spinning solution) passes down the duct to form the thread. Na+ and Cl- composition decreased while K+ and P and S increased. Indicators suggested that the pH dropped from 6.9+/-0.1 to 6.3+/-0.1. These novel findings suggest that the absorption of Na+ and secretion of the more chaotropic K+ may help the silk protein molecules to refold while the secretion of H+ may assist in this process and reduce the repulsive charges on them. This in turn may allow the molecules to approach one another more closely to crystallize. Thus precise control of the ionic environment within the spider's spinning duct may be important in forming a tough insoluble thread and when devising mimetic processes to spin silk proteins industrially.

Original publication

DOI

10.1007/s001140100220

Type

Journal article

Journal

Naturwissenschaften

Publication Date

04/2001

Volume

88

Pages

179 - 182

Keywords

Animals, Chlorine, Cryoelectron Microscopy, Exocrine Glands, Insect Proteins, Microscopy, Electron, Scanning, Potassium, Silk, Sodium, Spiders