Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The role of the CDR-3-like loop of the first domain of the CD4 molecule in infection by the human immunodeficiency virus type 1 (HIV-1) is controversial. In an attempt to determine whether the strong negative charge in the CDR-3-like loop influences HIV-1 infection we have substituted by mutagenesis negative for positively charged residues at position 87/88 and 91/92. These mutations were shown to have no obvious effect on CD4 conformation outside of the CDR-3-like loop. Infection of cells expressing the E87K/D88K substitution mutant resulted in a selective reduction in infectivity for certain HIV-1 viruses compared to cells expressing wile-type CD4. Viruses Hx10, HxB2, and MN were 4- to 13-fold less efficient at infecting the E87K/D88K mutant, whereas SF2, RF, and NDK yielded an efficiency of infection similar to, or slightly greater than, that of the wild type. To investigate the step at which infectivity was selectively reduced, we compared early events in the life cycles of Hx10 and SF2 viruses using PCR entry and gp120-binding assays. Both gp120 binding and virus entry were reduced for Hx10 on the mutant CD4-expressing cells as compared to wild-type CD4-expressing cells, whereas no difference was seen in either assay with SF2. Although relatively small in magnitude, the contribution of the CDR-3-like loop to the overall CD4-gp120 interaction may serve to modify the binding and entry of certain virus isolates.

Original publication




Journal article


AIDS Res Hum Retroviruses

Publication Date





1001 - 1013


CD4 Antigens, Cell Line, HIV Envelope Protein gp120, HIV-1, Humans, Models, Molecular, Mutagenesis, Site-Directed, Polymerase Chain Reaction, Protein Conformation, RNA-Directed DNA Polymerase, Static Electricity, Structure-Activity Relationship