Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Neutralisation by antibody is, for a number of viruses, an in vitro correlate for protection in vivo. For HIV-1 this is controversial. However, the induction of a potent anti-HIV neutralising antibody response remains one of the principal goals in vaccine development. A greater knowledge of the fundamental mechanisms underlying the neutralisation process would help direct research towards suitable vaccine immunogens. The primary determinant of HIV neutralisation appears to be antibody affinity for the trimeric envelope glycoprotein spike on the virion, suggesting that epitope-specific effects are secondary and implying a single, dominant mechanism of neutralisation. Antibody interference with virion attachment to the target cell appears to be a major mechanism of neutralisation by gp120-specific antibodies. This is probably achieved both by antibody-induced dissociation of gp120 from gp41 and by direct inhibition of virus binding to receptor-coreceptor complexes. A gp41-specific antibody neutralises by interfering with post-attachment steps leading to virus membrane fusion. Recent advances in structural analyses of the HIV envelope glycoproteins coupled with data obtained from antibody mapping and neutralisation studies allow a greater understanding of Env function and its inhibition. This in turn should lead to a more rational basis for vaccine design aimed at stimulating highly effective neutralising antibodies.

Type

Conference paper

Publication Date

03/1999

Volume

66

Pages

143 - 149

Keywords

AIDS Vaccines, Animals, Drug Design, HIV Antibodies, HIV Envelope Protein gp120, HIV Envelope Protein gp41, HIV-1, Humans, Neutralization Tests, Structure-Activity Relationship