Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Major ampullate (MAA) silks from a variety of spider species were collected by artificial silking that adjusted the samples to have similar breaking strains. Those silks are highly comparable in post-yield mechanical properties, but their supercontraction behaviors and initial moduli vary in large ranges and both correlate with the content of one amino acid, proline. These relationships, in combination with protein sequence data, support the hypothesis that the proline-related motif, that is, GPGXX, may play a key role in silk. This also explains the interspecific variability of spider dragline silk. Moreover, MAA silks from three representative species were prepared in a range of processing conditions and their mechanical properties were compared. Our results indicate how chemical compositions, coupled with processing conditions, shape the mechanical properties of the spider silk.

Original publication

DOI

10.1021/bm700877g

Type

Journal article

Journal

Biomacromolecules

Publication Date

01/2008

Volume

9

Pages

116 - 121

Keywords

Animals, Female, Materials Testing, Proline, Silk, Species Specificity, Spiders