Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Typical spider dragline silk tends to outperform other natural fibres and most man-made filaments. However, even small changes in spinning conditions can have large effects on the mechanical properties of a silk fibre as well as on its water uptake. Absorbed water leads to significant shrinkage in an unrestrained dragline fibre and reversibly converts the material into a rubber. This process is known as supercontraction and may be a functional adaptation for the silk's role in the spider's web. Supercontraction is thought to be controlled by specific motifs in the silk proteins and to be induced by the entropy-driven recoiling of molecular chains. In analogy, in man-made fibres thermal shrinkage induces changes in mechanical properties attributable to the entropy-driven disorientation of 'unfrozen' molecular chains (as in polyethylene terephthalate) or the 'broken' intermolecular hydrogen bonds (as in nylons). Here we show for Nephila major-ampullate silk how in a biological fibre the spinning conditions affect the interplay between shrinkage and mechanical characteristics. This interaction reveals design principles linking the exceptional properties of silk to its molecular orientation.

Original publication




Journal article


Nat Mater

Publication Date





901 - 905


Animals, Female, Fibroins, Insect Proteins, Spiders, Stress, Mechanical