Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The centriole pair in animals shows duplication and structural maturation at specific cell cycle points. In G1, a cell has two centrioles. One of the centrioles is mature and was generated at least two cell cycles ago. The other centriole was produced in the previous cell cycle and is immature. Both centrioles then nucleate one procentriole each which subsequently elongate to full-length centrioles, usually in S or G2 phase. However, the point in the cell cycle at which maturation of the immature centriole occurs is open to question. Furthermore, the molecular events underlying this process are entirely unknown. Here, using monoclonal and polyclonal antibody approaches, we describe for the first time a molecular marker which localizes exclusively to one centriole of the centriolar pair and provides biochemical evidence that the two centrioles are different. Moreover, this 96-kD protein, which we name Cenexin (derived from the Latin, senex for "old man," and Cenexin for centriole) defines very precisely the mature centriole of a pair and is acquired by the immature centriole at the G2/M transition in prophase. Thus the acquisition of Cenexin marks the functional maturation of the centriole and may indicate a change in centriolar potential such as its ability to act as a basal body for axoneme development or as a congregating site for microtubule-organizing material.

Type

Journal article

Journal

J Cell Biol

Publication Date

08/1995

Volume

130

Pages

919 - 927

Keywords

Animals, Antibodies, Monoclonal, Antibody Specificity, Biomarkers, Blotting, Western, Cell Compartmentation, Cell Cycle, Centrioles, Fluorescent Antibody Technique, G2 Phase, Microscopy, Confocal, Microscopy, Electron, Microscopy, Video, Mitosis, Models, Biological, Sheep, Thymus Gland