Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Motor skill learning may involve training a neural system to automatically perform sequences of movements, with the training signals provided by a different system, used mainly during training to perform the movements, that operates under visual sensory guidance. We use a dynamical systems perspective to show how complex motor sequences could be learned by the automatic system. The network uses a continuous attractor network architecture to perform path integration on an efference copy of the motor signal to keep track of the current state, and selection of which motor cells to activate by a movement selector input where the selection depends on the current state being represented in the continuous attractor network. After training, the correct motor sequence may be selected automatically by a single movement selection signal. A feature of the model presented is the use of 'trace' learning rules which incorporate a form of temporal average of recent cell activity. This form of temporal learning underlies the ability of the networks to learn temporal sequences of behaviour. We show that the continuous attractor network models developed here are able to demonstrate the key features of motor function. That is, (i) the movement can occur at arbitrary speeds; (ii) the movement can occur with arbitrary force; (iii) the agent spends the same relative proportions of its time in each part of the motor sequence; (iv) the agent applies the same relative force in each part of the motor sequence; and (v) the actions always occur in the same sequence.

Original publication

DOI

10.1016/S0893-6080(02)00237-X

Type

Journal article

Journal

Neural Netw

Publication Date

03/2003

Volume

16

Pages

161 - 182

Keywords

Excitatory Postsynaptic Potentials, Motor Skills, Neural Networks (Computer)