Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We summarize exploratory work on multigrain crystallography. The experimental arrangement comprises a monochromatic beam, a fully illuminated sample with up to several hundred grains in transmission geometry on a rotary table and a 2D detector. Novel algorithms are presented for indexing, integration and filtering with emphasis on handling the complications of spot overlap and the need for on-line analysis. The structure solution and refinement steps are performed by conventional single crystal programs. Simulations are used to verify the algorithms and to probe the overall limitations of the methodology in terms of number of grains, size of unit cell and direct space resolution. First experimental results in the fields of chemistry, structural biology and time-resolved studies in photochemistry are presented. As an outlook, the concept of TotalCrystallography is introduced, defined as the simultaneous characterization of the 3D atomic, and 3D grain-scale structure of polycrystalline specimens with phases of unknown composition and structure. © by Oldenbourg Wissenschaftsverlag, München.

Original publication

DOI

10.1524/zkri.2012.1438

Type

Journal article

Journal

Zeitschrift fur Kristallographie

Publication Date

01/01/2012

Volume

227

Pages

63 - 78