Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Circulating levels of glucocorticoids show a circadian rhythm. Obesity is associated with a flattening of the diurnal rhythm; plasma cortisol levels are slightly increased during the trough, although they are normal or low in the morning. Studies in humans and in leptin-resistant Zucker rats suggest that tissue-specific alterations in glucocorticoid exposure might play a key role for development of obesity and obesity-associated dysregulation of the hypothalamic-pituitary-adrenal axis. We hypothesized that there is a circadian rhythm in prereceptor metabolism of glucocorticoids exerted by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in brain and/or peripheral tissues (liver, fat, and muscle) that might be abrogated in obesity. The present study demonstrates a circadian rhythm in 11beta-HSD1 mRNA expression (35-45% increase at morning vs. evening, P < 0.05) in dentate gyrus granular layer and CA1 subregions of the hippocampus in lean Zucker rats that was lost in the obese rats. Sprague Dawley rats also revealed a diurnal rhythm in hippocampal 11beta-HSD1 mRNA expression. There was no circadian variation in 11beta-HSD enzyme activity in peripheral tissues, although obese Zucker rats had a decreased enzyme activity in liver and epididymal fat (by approximately 40%, P < 0.05) compared with lean rats. In Sprague Dawley rats, 11beta-HSD activity in adipose tissue was higher in retroperitoneal and epididymal vs. sc fat (P < 0.001). In summary, obese Zucker rats lack a circadian rhythm of 11beta-HSD1 gene expression in the hippocampus, which may contribute to increased activity of the hypothalamic-pituitary-adrenal axis and altered diurnal variation of circulating corticosterone levels.

Original publication

DOI

10.1210/en.2006-0897

Type

Journal article

Journal

Endocrinology

Publication Date

06/2007

Volume

148

Pages

2716 - 2722

Keywords

11-beta-Hydroxysteroid Dehydrogenase Type 1, Animals, Cerebral Cortex, Circadian Rhythm, Corticosterone, Gene Expression Regulation, Enzymologic, Hippocampus, Male, Obesity, RNA, Messenger, Rats, Rats, Sprague-Dawley, Rats, Zucker