Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Combining a high degree of selectivity and nanoscale dimensions, biological pores are attractive potential components for nanotechnology devices and applications. Biomimetic design will facilitate production of stable synthetic nanopores with defined functionality. Bacterial porins offer a good source of possible templates for such nanopores as they form stable, selective pores in lipid bilayers. Molecular dynamics simulations have been used to design simple model nanopores with permeation free energy profiles that can be made to mimic a template protein, the OprP porin, which forms pores selective for anions. In particular, we explored the effects of varying the nature of pore-lining groups on free energy profiles for phosphate and chloride ions along the pore axis and the total charge of the permeation pathway of the pore. Cationic side chains lining the model nanopore are required to model the local detail of the OprP permeation landscape, whereas the total charge contributes to its magnitude. These studies indicate that a locally accurate biomimetic design has captured the essentials of the structure/function relationship of the parent protein.

Original publication




Journal article


J Phys Chem B

Publication Date





462 - 468


Bacterial Proteins, Biomimetics, Chlorides, Ions, Lipid Bilayers, Molecular Dynamics Simulation, Nanopores, Nanotechnology, Phosphates, Porins