Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND AND OBJECTIVE: It is important that a surgical list is planned to utilise as much of the scheduled time as possible while not over-running, because this can lead to cancellation of operations. We wished to assess whether, theoretically, the known duration of individual operations could be used quantitatively to predict the likely duration of the operating list. METHODS: In a university hospital setting, we first assessed the extent to which the current ad-hoc method of operating list planning was able to match the scheduled operating list times for 153 consecutive historical lists. Using receiver operating curve analysis, we assessed the ability of an alternative method to predict operating list duration for the same operating lists. This method uses a simple formula: the sum of individual operation times and a pooled standard deviation of these times. We used the operating list duration estimated from this formula to generate a probability that the operating list would finish within its scheduled time. Finally, we applied the simple formula prospectively to 150 operating lists, 'shadowing' the current ad-hoc method, to confirm the predictive ability of the formula. RESULTS: The ad-hoc method was very poor at planning: 50% of historical operating lists were under-booked and 37% over-booked. In contrast, the simple formula predicted the correct outcome (under-run or over-run) for 76% of these operating lists. The calculated probability that a planned series of operations will over-run or under-run was found useful in developing an algorithm to adjust the planned cases optimally. In the prospective series, 65% of operating lists were over-booked and 10% were under-booked. The formula predicted the correct outcome for 84% of operating lists. CONCLUSION: A simple quantitative method of estimating operating list duration for a series of operations leads to an algorithm (readily created on an Excel spreadsheet, http://links.lww.com/EJA/A19) that can potentially improve operating list planning.

Original publication

DOI

10.1097/EJA.0b013e3283446b9c

Type

Journal article

Journal

Eur J Anaesthesiol

Publication Date

07/2011

Volume

28

Pages

493 - 501

Keywords

Algorithms, Appointments and Schedules, Decision Support Systems, Clinical, Decision Support Systems, Management, Efficiency, Organizational, Elective Surgical Procedures, England, Health Services Research, Hospitals, University, Humans, Least-Squares Analysis, Linear Models, Nonlinear Dynamics, Operating Room Information Systems, Operating Rooms, Personnel Staffing and Scheduling, Personnel Staffing and Scheduling Information Systems, ROC Curve, Task Performance and Analysis, Time Factors, Time Management, Workload