Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: At multiple facilities including some in the United Kingdom's National Health Service, the following are features of many surgical-anesthetic teams: i) there is sufficient workload for each operating room (OR) list to almost always be fully scheduled; ii) the workdays are organized such that a single surgeon is assigned to each block of time (usually 8 h); iii) one team is assigned per block; and iv) hardly ever would a team "split" to do cases in more than one OR simultaneously. METHODS: We used Monte-Carlo simulation using normal and Weibull distributions to estimate the times to complete lists of cases scheduled into such 8 h sessions. For each combination of mean and standard deviation, inefficiencies of use of OR time were determined for 10 h versus 8 h of staffing. RESULTS: When the mean actual hours of OR time used averages < or = 8 h 25 min, 8 h of staffing has higher OR efficiency than 10 h for all combinations of standard deviation and relative cost of over-run to under-run. When mean > or = 8 h 50 min, 10 h staffing has higher OR efficiency. For 8 h 25 min < mean < 8 h 50 min, the economic break-even point depends on conditions. For example, break-even is: (a) 8 h 27 min for Weibull, standard deviation of 60 min and relative cost of over-run to under-run of 2.0 versus (b) 8 h 48 min for normal, standard deviation of 0 min and relative cost ratio of 1.50. Although the simplest decision rule would be to staff for 8 h if the mean workload is < or = 8 h 40 min and to staff for 10 h otherwise, performance was poor. For example, for the Weibull distribution with mean 8 h 40 min, standard deviation 60 min, and relative cost ratio of 2.00, the inefficiency of use of OR time would be 34% larger if staffing were planned for 8 h instead of 10 h. CONCLUSIONS: For surgical teams with 8 h sessions, use the following decision rule for anesthesiology and OR nurse staffing. If actual hours of OR time used averages < or = 8 h 25 min, plan 8 h staffing. If average > or = 8 h 50 min, plan 10 h staffing. For averages in between, perform the full analysis of McIntosh et al. (Anesth Analg 2006;103:1499-516).

Original publication




Journal article


Anesth Analg

Publication Date





1910 - 1915


Costs and Cost Analysis, Data Interpretation, Statistical, Monte Carlo Method, Operating Rooms, Personnel Staffing and Scheduling, State Medicine