Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

To identify the roles of the two nucleotide-binding folds (NBFs) in the function of human P-glycoprotein, a multidrug transporter, we mutated the key lysine residues to methionines and the cysteine residues to alanines in the Walker A (WA) motifs (the core consensus sequence) in the NBFs. We examined the effects of these mutations on N-ethylmaleimide (NEM) and ATP binding, as well as on the vanadate-induced nucleotide trapping with 8-azido-[alpha-32P]ATP. Mutation of the WA lysine or NEM binding cysteine in either of the NBFs blocked vanadate-induced nucleotide trapping of P-glycoprotein. These results suggest that if one NBF is non-functional, there is no ATP hydrolysis even if the other functional NBF contains a bound nucleotide, further indicating the strong cooperation between the two NBFs of P-glycoprotein. However, we found that the effect of NEM modification at one NBF on ATP binding at the other NBF was not equivalent, suggesting a non-equivalency of the role of the two NBFs in P-glycoprotein function.

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

14/08/1998

Volume

1373

Pages

131 - 136

Keywords

Adenosine Triphosphate, Cysteine, Ethylmaleimide, Humans, P-Glycoprotein, Protein Binding, Protein Folding, Vanadates