Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Respiratory depression limits the use of opioid analgesia. Although well described clinically, the specific mechanisms of opioid action on respiratory control centres in the brain have, until recently, been less well understood. This article reviews the mechanisms of opioid-induced respiratory depression, from the cellular to the systems level, to highlight gaps in our current understanding, and to suggest avenues for further research. The ultimate aim of combating opioid-induced respiratory depression would benefit patients in pain and potentially reduce deaths from opioid overdose. By integrating recent findings from animal studies with those from human volunteer and clinical studies, further avenues for investigation are proposed, which may eventually lead to safer opioid analgesia.

Original publication




Journal article


Br J Anaesth

Publication Date





747 - 758


Analgesics, Opioid, Animals, Brain Mapping, Brain Stem, Disease Models, Animal, Humans, Mice, Mice, Knockout, Receptors, Opioid, Respiratory Insufficiency, Respiratory Physiological Phenomena