Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A system of new integral equations is presented. They are derived from Maxwell's equations and describe radio-frequency (RF) current densities on a two-dimensional flat plate. The equations are generalisations of Pocklington's integral equation showing phase-retardation in two dimensions. These singular equations are solved, numerically, for the case of one-dimensional geometry. The solutions are shown to display effects which correspond to damped resonance when the wavelength of the current matches aspects of the geometry of the conductor. © Australian Mathematical Society 2004.

Original publication




Journal article


ANZIAM Journal

Publication Date





495 - 510