Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We develop tidal-ventilation pulmonary gas-exchange equations that allow pulmonary shunt to have different values during expiration and inspiration, in accordance with lung collapse and recruitment during lung dysfunction (Am. J. Respir. Crit. Care Med. 158 (1998) 1636). Their solutions are tested against published animal data from intravascular oxygen tension and saturation sensors. These equations provide one explanation for (i) observed physiological phenomena, such as within-breath fluctuations in arterial oxygen saturation and blood-gas tension; and (ii) conventional (time averaged) blood-gas sample oxygen tensions. We suggest that tidal-ventilation models are needed to describe within-breath fluctuations in arterial oxygen saturation and blood-gas tension in acute respiratory distress syndrome (ARDS) subjects. Both the amplitude of these oxygen saturation and tension fluctuations, and the mean oxygen blood-gas values, are affected by physiological variables such as inspired oxygen concentration, lung volume, and the inspiratory:expiratory (I:E) ratio, as well as by changes in pulmonary shunt during the respiratory cycle.

Type

Journal article

Journal

Respir Physiol Neurobiol

Publication Date

12/06/2003

Volume

136

Pages

77 - 88

Keywords

Animals, Computer Simulation, Dogs, Humans, Lung Volume Measurements, Models, Biological, Oxygen, Pulmonary Alveoli, Pulmonary Artery, Pulmonary Gas Exchange, Pulmonary Ventilation, Respiratory Function Tests, Respiratory Mechanics, Stress Disorders, Traumatic, Acute, Tidal Volume, Time Factors