Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Approximately 10% to 20% of patients with autoimmune MG do not have antibodies to the acetylcholine receptor (AChR), so-called seronegative MG (SNMG). IgG antibodies from up to 70% of SNMG patients bind to the muscle-specific receptor tyrosine kinase, MuSK. The plasmas and non-IgG fractions from SNMG patients (and some with AChR antibodies) also contain a factor, perhaps an IgM antibody, that inhibits AChR function, but it is not clear how this factor acts and whether it is related to the MuSK IgG antibodies. METHODS: The authors studied 12 unselected SNMG plasmas and their non-IgG fractions; seven were positive for MuSK IgG antibodies. Ion flux assays, electrophysiology, phosphorylation, and kinase assays were used to look at mechanisms of action. RESULTS: Eight of the 12 plasmas and their non-IgG fractions inhibited AChR function, but the inhibitory activity was transient and did not correlate with the presence of MuSK IgG antibodies. Two of three plasmas added outside of a cell-attached patch pipette inhibited AChR function within the patch, and these two plasmas also increased AChR phosphorylation. CONCLUSIONS: The authors propose that a plasma factor(s) in SNMG patients, distinct from MuSK IgG antibodies, binds to a muscle membrane receptor and activates a second messenger pathway leading to AChR phosphorylation and reduced AChR function. Identifying the target for this factor should lead to improved diagnosis of MG in MuSK antibody-negative patients and may provide new insights into the function of the neuromuscular junction and pathophysiological mechanisms in MG.

Type

Journal article

Journal

Neurology

Publication Date

10/12/2002

Volume

59

Pages

1682 - 1688

Keywords

Adenosine Triphosphate, Adolescent, Adult, Aged, Autoantibodies, Cell Line, Child, Child, Preschool, Cholinergic Antagonists, Cyclic AMP-Dependent Protein Kinases, Electrophysiology, Female, Humans, Immunoglobulin G, Infant, Male, Middle Aged, Myasthenia Gravis, Patch-Clamp Techniques, Phosphorylation, Protein Kinases, Receptor Protein-Tyrosine Kinases, Receptors, Cholinergic, Sodium