Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Lesion and functional imaging studies in humans have suggested that the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and intraparietal sulcus (IPS) are involved in orienting attention. A functional magnetic resonance imaging study supplemented by a behavioral experiment examined the effects of 5 Hz repetitive transcranial magnetic stimulation (rTMS) conditioning to the right and left DLPFC on reaction times and synaptic activity as indexed by changes in the blood oxygenation level-dependent (BOLD) signal during a cued choice reaction time task. Orienting precues were either correct (valid) or incorrect (invalid) with respect to the subsequent move cue. The effects of real and sham rTMS were compared for each site of stimulation. Invalid trials showed a significant increase in response times and increases in the BOLD signal in right frontal and parietal regions when compared with valid trials. Conditioning left DLPFC with rTMS led to decreased BOLD signal during performance of this reorienting task in areas including left VLPFC and left IPS. Comparing invalid to valid trials after right DLPFC conditioning revealed decreased BOLD signal in right VLPFC. Data from the behavioral study showed that right DLPFC rTMS selectively increases response times in invalid trials. This effect was only present in the first 10 min after rTMS conditioning. No effect was found in either validly or invalidly cued trials with left DLPFC conditioning. These results suggest that 5 Hz rTMS over right DLPFC exerts remote effects on the activity of areas that functionally interact with the DLPFC during attentional processes, particularly when the reorienting of attention is more demanding as in invalid trials.

Original publication

DOI

10.1523/JNEUROSCI.2657-06.2006

Type

Journal article

Journal

J Neurosci

Publication Date

20/09/2006

Volume

26

Pages

9629 - 9638

Keywords

Adult, Conditioning (Psychology), Cues, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Photic Stimulation, Prefrontal Cortex, Psychomotor Performance, Reaction Time, Time Factors, Transcranial Magnetic Stimulation