Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Ion channels are crucial elements in neuronal signaling and synaptic transmission, and defects in their function are known to underlie rare genetic disorders, including some forms of epilepsy. A second class of channelopathies, characterized by autoantibodies against ligand- and voltage-gated ion channels, cause a variety of defects in peripheral neuromuscular and ganglionic transmission. There is also emerging evidence for autoantibody-mediated mechanisms in subgroups of patients with central nervous system disorders, particularly those involving defects in cognition or sleep and often associated with epilepsy. In all autoimmune channelopathies, the relationship between autoantibody specificity and clinical phenotype is complex. But with this new information, autoimmune channelopathies are detected and treated with increasing success, and future research promises new insights into the mechanisms of dysfunction at neuronal synapses and the determinants of clinical phenotype.

Original publication




Journal article



Publication Date





123 - 138


Animals, Autoantibodies, Autoimmune Diseases of the Nervous System, Disease Models, Animal, Humans, Ion Channels, Models, Neurological, Nervous System Diseases, Neuromuscular Junction