Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Gap junction channels assembled from connexin protein subunits mediate intercellular transfer of ions and metabolites. Impaired channel function is implicated in several hereditary human diseases. In particular, defective permeation of cAMP or inositol-1,4,5-trisphosphate (InsP(3)) through connexin channels is associated with peripheral neuropathies and deafness, respectively. Here we present a method to estimate the permeability of single gap junction channels to second messengers. Using HeLa cells that overexpressed wild-type human connexin 26 (HCx26wt) as a model system, we combined measurements of junctional conductance and fluorescence resonance energy transfer (FRET) emission ratio of biosensors selective for cAMP and InsP(3). The unitary permeabilities to cAMP (47 x 10(-3) +/- 15 x 10(-3) microm(3)/s) and InsP(3) (60 x 10(-3) +/- 12 x 10(-3) microm(3)/s) were similar, but substantially larger than the unitary permeability to lucifer yellow (LY; 7 +/- 3 x 10(-3) microm(3)/s), an exogenous tracer. This method permits quantification of defects of metabolic coupling and can be used to investigate interdependence of intercellular diffusion and cross-talk between diverse signaling pathways.

Original publication




Journal article


Nat Methods

Publication Date





353 - 358


Biosensing Techniques, Connexin 26, Connexins, Cyclic AMP, Electrophysiology, Fluorescence Resonance Energy Transfer, Gap Junctions, HeLa Cells, Humans, Inositol Phosphates, Ion Channel Gating, Ion Channels, Microscopy, Fluorescence, Permeability, Second Messenger Systems, Transfection