Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In trypanosomes, the large mitochondrial genome within the kinetoplast is physically connected to the flagellar basal bodies and is segregated by them during cell growth. The structural linkage enabling these phenomena is unknown. We have developed novel extraction/fixation protocols to characterize the links involved in kinetoplast-flagellum attachment and segregation. We show that three specific components comprise a structure that we have termed the tripartite attachment complex (TAC). The TAC involves a set of filaments linking the basal bodies to a zone of differentiated outer and inner mitochondrial membranes and a further set of intramitochondrial filaments linking the inner face of the differentiated membrane zone to the kinetoplast. The TAC and flagellum-kinetoplast DNA connections are sustained throughout the cell cycle and are replicated and remodeled during the periodic kinetoplast DNA S phase. This understanding of the high-order trans-membrane linkage provides an explanation for the spatial position of the trypanosome mitochondrial genome and its mechanism of segregation. Moreover, the architecture of the TAC suggests that it may also function in providing a structural and vectorial role during replication of this catenated mass of mitochondrial DNA. We suggest that this complex may represent an extreme form of a more generally occurring mitochondrion/cytoskeleton interaction.

Original publication

DOI

10.1091/mbc.E02-08-0525

Type

Journal article

Journal

Mol Biol Cell

Publication Date

05/2003

Volume

14

Pages

1769 - 1779

Keywords

Animals, DNA, Mitochondrial, Flagella, Kinetochores, Microscopy, Electron, Trypanosomatina