Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity.
Komatsu N., Mariotti-Ferrandiz ME., Wang Y., Malissen B., Waldmann H., Hori S.
Natural regulatory T cells (T(reg)) represent a distinct lineage of T lymphocytes committed to suppressive functions, and expression of the transcription factor Foxp3 is thought to identify this lineage specifically. Here we report that, whereas the majority of natural CD4(+)Foxp3(+) T cells maintain stable Foxp3 expression after adoptive transfer to lymphopenic or lymphoreplete recipients, a minor fraction enriched within the CD25(-) subset actually lose it. Some of those Foxp3(-) T cells adopt effector helper T cell (T(h)) functions, whereas some retain "memory" of previous Foxp3 expression, reacquiring Foxp3 upon activation. This minority "unstable" population exhibits flexible responses to cytokine signals, relying on transforming growth factor-beta to maintain Foxp3 expression and responding to other cytokines by differentiating into effector T(h) in vitro. In contrast, CD4(+)Foxp3(+)CD25(high) T cells are resistant to such conversion to effector T(h) even after many rounds of cell division. These results demonstrate that natural Foxp3(+) T cells are a heterogeneous population consisting of a committed T(reg) lineage and an uncommitted subpopulation with developmental plasticity.