Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During mitosis, cyclin B is extremely dynamic and although it is concentrated at the centrosomes and spindle microtubules (MTs) in organisms ranging from yeast to humans, the mechanisms that determine its localisation are poorly understood. To understand how cyclin B is targeted to different locations in the cell we have isolated proteins that interact with cyclin B in Drosophila embryo extracts. Here we show that cyclin B interacts with the molecular chaperone Hsp90 and with the MT-associated protein (MAP) Mini spindles (Msps; the Drosophila orthologue of XMAP215/ch-TOG). Both Hsp90 and Msps are concentrated at centrosomes and spindles, and we show that Hsp90, but not Msps, is required for the efficient localisation of cyclin B to these structures. We find that, unlike what happens with other cell cycle proteins, Hsp90 is not required to stabilise cyclin B or Msps during mitosis. Thus, we propose that Hsp90 plays a novel role in regulating the localisation of cyclin B and Msps during mitosis.

Original publication

DOI

10.1242/jcs.000604

Type

Journal article

Journal

J Cell Sci

Publication Date

01/04/2007

Volume

120

Pages

1278 - 1287

Keywords

Animals, Cyclin B, Drosophila, Drosophila Proteins, Embryo, Nonmammalian, HSP90 Heat-Shock Proteins, Humans, Microtubule-Associated Proteins, Protein Binding, Recombinant Fusion Proteins, Spindle Apparatus