Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Advances in solution nuclear magnetic resonance (NMR) methodology that enable studies of very large proteins have also paved the way for studies of membrane proteins that behave like large proteins due to the added weight of surfactants. Solution NMR has been used to determine the high-resolution structures of several small, membrane proteins dissolved in detergent micelles and small bicelles. However, the usual difficulties with membrane proteins in producing, purifying, and stabilizing the proteins away from native membranes remain, requiring intensive screening efforts. Low levels of heterologous expression can be the most detrimental aspect to studying membrane proteins. This is exacerbated for NMR studies because of the costs of isotopically enriched media. Thus, solution NMR studies have tended to focus on relatively small, membrane proteins that can be expressed into inclusion bodies and refolded. Here, we describe the methods used to produce, purify, and refold the proton channel M2 into detergent micelles, and the procedures used to determine chemical shift assignments and the atomic level structure of the closed form of the homotetrameric channel.

Original publication




Journal article


Methods Mol Biol

Publication Date





165 - 179


Bioreactors, Carbon Isotopes, Escherichia coli, Models, Molecular, Nitrogen Isotopes, Nuclear Magnetic Resonance, Biomolecular, Protein Conformation, Recombinant Fusion Proteins, Tryptophan, Viral Matrix Proteins