Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The gene encoding prion protein is polymorphic in human populations, with over 40% of native Europeans, for example, being heterozygous for the Met-129 and Val-129 alleles. The polymorphism affects both the incidence and the clinical presentation of a range of prion diseases, with heterozygotes generally showing the highest levels of resistance. It has been suggested that an earlier epidemic of prion diseases exerted balancing selection on the two alleles, and we have previously demonstrated that the two encoded proteins have potentially compensating tendencies to form amyloid and soluble beta-oligomers, respectively, in vitro. More strikingly, here we demonstrate that mixed oligomers, composed of both allelic forms, show an extreme sluggishness in converting to amyloid in comparison with oligomers homogenous for either allele. It may be that this example of molecular heterosis in vitro provides the basis for maintenance of the polymorphism in the population and that beta-oligomers represent a form of PrP sequestered from pathogenic amyloid formation in vivo.

Original publication

DOI

10.1074/jbc.M606606200

Type

Journal article

Journal

J Biol Chem

Publication Date

10/11/2006

Volume

281

Pages

34171 - 34178

Keywords

Alleles, Amyloid, Circular Dichroism, Heterozygote, Homozygote, Humans, Hybrid Vigor, Kinetics, Methionine, Prion Diseases, Prions, Thiazoles, Valine