Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The mechanisms by which cellular immunity maintains the asymptomatic state after human immunodeficiency virus type 1 (HIV-1) infection are poorly understood. CD4+ T lymphocytes play a complex role in regulating anti-HIV effector pathways, including activation of macrophages, which are themselves implicated in clinical latency and pathogenesis of symptomatic acquired immune deficiency syndrome. We have found that a newly identified T helper type 2 lymphokine, interleukin 13 (IL-13), inhibits HIV-1ADA and Ba-L replication in primary tissue culture-derived macrophages but not in peripheral blood lymphocytes. Viral production in cells was measured by viral protein (p24) and reverse transcriptase levels, while entry was assessed by proviral DNA analysis at timed intervals after infection. Inhibition by IL-13 was dose and time dependent and not mediated through altered viral entry, reverse transcription, or viral release. IL-13 is therefore a candidate cytokine for the suppression of HIV infection within monocytes and macrophages in vivo.

Type

Journal article

Journal

J Exp Med

Publication Date

01/08/1993

Volume

178

Pages

743 - 747

Keywords

Base Sequence, Cells, Cultured, DNA, Single-Stranded, HIV-1, Humans, Interleukin-13, Interleukins, Macrophages, Molecular Sequence Data, Recombinant Proteins, T-Lymphocytes, Virus Replication