Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Leaf venation architecture varies greatly among living and fossil plants. However, we still have a limited understanding of when, why and in which clades new architectures arose and how they impacted leaf functioning. Using data from 1,000 extant and extinct (fossil) plants, we reconstructed approximately 400 million years of venation evolution across clades and vein sizes. Overall, venation networks evolved from having fewer veins and less smooth loops to having more veins and smoother loops, but these changes only occurred in small and medium vein sizes. The diversity of architectural designs increased biphasically, first peaking in the Paleozoic, then decreasing during the Cretaceous, then increasing again in the Cenozoic, when recent angiosperm lineages initiated a second and ongoing phase of diversification. Vein evolution was not associated with temperature and CO2 fluctuations but was associated with insect diversification. Our results highlight the complexity of the evolutionary trajectory and potential drivers of venation network architecture.

Original publication

DOI

10.1038/s41477-025-02011-y

Type

Journal article

Journal

Nat Plants

Publication Date

06/06/2025