Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Stomata are epidermal pores that control the exchange of gaseous CO2 and H2O between plants and their environment. Modulating stomatal density can alter this exchange and thus presents a viable target for engineering improved crop productivity and climate resilience. Here, we show that stomatal density in Arabidopsis thaliana can be decreased by the expression of a water-forming NAD(P)H oxidase targeted to stomatal precursor cells. We demonstrate that this reduction in stomatal density occurs irrespective of whether the expressed enzyme is localized to the cytosol, chloroplast stroma or chloroplast intermembrane space of these cells. We also reveal that this decrease in stomatal density occurs in the absence of any measurable impact on the efficiency and thermal sensitivity of photosynthesis, or on stomatal dynamics. Consequently, overexpression plants exhibit a higher intrinsic water-use efficiency due to an increase in CO2 fixed per unit water transpired. Finally, we demonstrate that this enhanced water-use efficiency translates to an improvement in vegetative growth and biomass accumulation under water-deficit conditions. Together, these results thus provide a novel approach for enhancing plant productivity through metabolic engineering of stomatal density.

Original publication

DOI

10.1111/pbi.70130

Type

Journal article

Journal

Plant Biotechnol J

Publication Date

23/05/2025

Keywords

biomass, growth, photosynthesis, stomata, water‐deficit, water‐use efficiency