Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Simulation-Based Inference (SBI) has recently emerged as a powerful framework for Bayesian inference: Neural networks are trained on simulations from a forward model, and learn to rapidly estimate posterior distributions. We here present an SBI framework for parametric spherical deconvolution of diffusion MRI data of the brain. We demonstrate its utility for estimating white matter fibre orientations, mapping uncertainty of voxel-based estimates and performing probabilistic tractography by spatially propagating fibre orientation uncertainty. We conduct an extensive comparison against established Bayesian methods based on Markov-Chain Monte-Carlo (MCMC) and find that: a) in-silico training can lead to calibrated SBI networks with accurate parameter estimates and uncertainty mapping for both single- and multi-shell diffusion MRI, b) SBI allows amortised inference of the posterior distribution of model parameters given unseen observations, which is orders of magnitude faster than MCMC, c) SBI-based tractography yields reconstructions that have a high level of agreement with their MCMC-based counterparts, equal to or higher than scan-rescan reproducibility of estimates. We further demonstrate how SBI design considerations (such as dealing with noise, defining priors and handling model selection) can affect performance, allowing us to identify optimal practices. Taken together, our results show that SBI provides a powerful alternative to classical Bayesian inference approaches for fast and accurate model estimation and uncertainty mapping in MRI.

Original publication

DOI

10.1016/j.media.2025.103580

Type

Journal article

Journal

Med Image Anal

Publication Date

20/04/2025

Volume

103

Keywords

Artificial neural networks, Ball & Sticks, Bayesian inference, Fibre orientations, Markov-Chain Monte-Carlo, Parametric deconvolution, dMRI