Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Animals captive bred for reintroduction are often housed under conditions which are not representative of their preferred social structure for at least part of the reintroduction process. Specifically, this is most likely to occur during the final stages of the release programme, whilst being housed during transportation to the release site. The degree of social stress experienced by individuals during this time may negatively impact upon their immunocompetence. METHODOLOGY/PRINCIPAL FINDINGS: We examined two measure of stress--body weight and Leukocyte Coping Capacity (LCC)--to investigate the effects of group size upon captive-bred water voles destined for release within a reintroduction program. Water voles were housed in laboratory cages containing between one and eight individuals. LCC scores were negatively correlated with group size, suggesting that individuals in larger groups experienced a larger degree of immuno-suppression than did individuals housed in smaller groups or individually. During the course of the study mean body weights increased, in contrast to expectations from a previous study. This was attributed to the individuals sampled being sub-adults and thus growing in length and weight during the course of the investigation. CONCLUSIONS/SIGNIFICANCE: The reintroduction process will inevitably cause some stress to the release cohort. However, for water voles we conclude that the stress experienced may be reduced by decreasing group size within captive colony and/or transportation housing practises. These findings are of significance to other species' reintroductions, in highlighting the need to consider life-history strategies when choosing housing systems for animals being maintained in captivity prior to release to the wild. A reduction in stress experienced at the pre-release stage may improve immunocompetence and thus animal welfare and initial survival post-release.

Original publication




Journal article


PLoS One

Publication Date





Animals, Arvicolinae, Body Weight, Breeding, Conservation of Natural Resources, Environment, Extinction, Biological, Female, Immune System, Leukocytes, Male, Population Density, Population Dynamics